Numerical Methods in Economacs
MIT Press, 1998

Notes for Chapter 4
Optimization

Kenneth L. Judd
Hoover Institution

October 11, 2004



Optimization Problems

e Canonical problem:
min, f(x)
s.t. g(x) =0,
h(x) <0,
— f:R" — R is the objective function
— g : R" — R™ is the vector of m equality constraints

— h: R" — R is the vector of ¢ inequality constraints.
e Examples:

— maximization of consumer utility subject to a budget constraint
— optimal incentive contracts
— portfolio optimization

— life-cycle consumption
e Assumptions

— Always assume f, g, and h are continuous
— Usually assume f, g, and h are C"
— Often assume f, g, and h are C°



One-D Unconstrained Minimization: Newton’s Method

min - f(z),

e Assume f () is C* functions f(x)
— At a point a, the quadratic polynomial, p(z)
p(x) = f(a) + f'(a) (z — a) +

is the second-order approximation of f(x) at a

— Approximately minimize f by minimizing p(x)
—If f”(a) > 0, then p is convex, and z,,, = a — f'(a)/f"(a).

— Hope: z,, is closer than a to the minimum.

e Newton’s method:
Algorithm 4.2 Newton’s Method in R!

Initialize. Choose initial guess x( and stopping parameters d, € > 0.

Step 1. w1 = xp — f'(z1) /[ (Th)
Step 2. If |xp — xpi1| < e(1+ |xy|) and |f/(x)| <9,
STOP and report success; else go to step 1.



e Properties:

— Newton’s method finds critical points, that is, solutions to f'(z) = 0,
not min or max.

— If x,, converges to z*, must check f”(z*) to check if min or max

— Only find local extrema.
e Good news: convergence is locally quadratic.

Theorem 1 Suppose that f(x) is minimized at x*, C® in a neighborhood of
x*, and that f"(x*) # 0. Then there is some € > 0 such that if |xqg — 2| <

€, then the x, sequence defined in (4.1.2) converges quadratically to z*; in
particular,

(4.1.3)

15 the quadratic rate of convergence.



e Consumer problem example:

— Consumer has $1; price of z is $2, price of y is $3, utility function is
a2 4 2912,

— If 6 is amount spent on x then we have

1/2 N 1/2
max (g) e (179) (4.1.6)

— Solution #* = 3/11 = 272727
— If 6y = 1/2, Newton iteration is

0.5,0.2595917942, 0.2724249335, 0.2727271048, 0.2727272727
and magnitude of the errors are
2.3(-1), 1.3(=2), 3.1(—4), 1.7(=7), 4.8(—14)
e Problems with Newton’s method

— May not converge.

— f”(x) may be difficult to calculate.



Multidimensional Unconstrained Optimization: Comparison
Methods

e (Grid Search

— Pick a finite set of points, X.
x X could be a Cartesian grid:
V={vli=1,...,n}
X={zx e R"Vi,x; € V}
x X could be a low-discrepancy set of points (see Chapter 9)

— Compute f (z), z € X, and locate max

— Should always do some grid search first.



e Polytope Methods

Algorithm 4.3 Polytope Algorithm

Initialize. Choose the stopping rule parameter €. Choose an initial
simplex {z!, 2%, .-+ 2"}

Step 1. Reorder vertices so f(z') > f(z'™), i=1,---  n.

Step 2. Look for least 7 s.t. f(z') > f(y') where y' is reflection of z'.
If such an ¢ exists, set 2’ = ', and go to step 1.
Otherwise, go to step 3.

Step 3. Stopping rule: If the width of the current simplex
is less than ¢, STOP. Otherwise, go to step 4.

Step 4.  Shrink simplex: For i =1,2,--- ,n

set #' = 3(2' + 2"™), and go to step 1.
A
A' A” C'
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Multidimensional Optimization: Newton’s Method

k

e Idea: Given z", compute local quadratic approximation, p (z), of f (x)

around 2", and let 251 be max of p ()

Algorithm 4.4 Newton’s Method in R”

Initialize. Choose 2 and stopping parameters ¢ and € > 0.

Step 1. Compute Hessian, H(z"), and gradient, v/ f(z"), and solve
H(x¥)s" = —(s7f(2¥))T for the step s".

Step 2. Mt =aF + s,

Step 3. If || aF — 2ML || < (14 || 2% |]),
go to step 4; else go to step 1.

Step 4. If || s f (1) [|< 6(1 + | f(=¥1)|), STOP and report success
else STOP and report convergence to nonoptimal point.

e Stopping rule: Choose € and 0 to be bigger than square root of machine

epsilon.



Theorem 2 Suppose that f(x) is C°, minimized at x*, and that H(x*) is
nonsingular. Then there is some ¢ > 0 such that if | z° — x* ||< ¢, then the
sequence defined in (4.3.1) converges quadratically to x*.

e Problems with Newton’s method:

— May not converge
— Computational demands may be excessive

+ need at least O(n?) time to compute H(x*), perhaps more if one
does not have efficient code for H (x)

x need O(n?) space for H(z")
+ need O(n?) time to solve H(z%)s* = — (7 f(a*))T for s*
— May converge to local solution, not global solution

— We now consider methods which solve these problems.



Direction Set Methods

e Problem: may not converge, or go to wrong kind of extremum

e Solution: if we always move uphill, we will eventually get to a local
maximum

Algorithm 4.5 Generic Direction Method

Initialize. Choose initial 2° and stopping parameters § and € > 0.

Step 1. Compute a search direction s*.

Step 2. Solve \; = argminy f(z" + \s¥).

Step 8. Ml = aF 4+ N\

Step 4. If || 2% — 2" ||< e(1+ || =¥ ||), go to step 5;
else go to step 1.

Step 5. If || v f(2*Y) ||< 6(1 + f(2¥1)), STOP and report success;
else STOP and report convergence to nonoptimal point.

e Possible direction set methods

— Coordinate Directions

x Let search directions be coordinate, x1, x-, etc.

* Search direction sg9,, 1 = Ty
— Steepest Descent: s, = 7 f(2")
— Newton’s Method with Line Search: Hjs" = — (57 f(2%))7

e These will always converge to a local optimum.



Quasi-Newton Methods

e Problem: Hessians are expensive to compute

e Solution: Don’t need true Hessians (see Carter, 1993), so approximate

them

Generic Quasi-Newton Method

Initialize. Choose initial 2°, Hessian H° (I)and stopping

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.

Step 6.

parameters 0 and € > 0.

Solve Hy.s® = —(s7f(2*))" for the search direction s*.
Solve \; = arg miny, f(z* + \s")

ot = ok 4 \st.

Compute Hj, using Hy,, <7 f(z*h), 28 <7 f(2F), ete.

If || 2% — 2"+ ||< e(1+ || 2% ||), go to step 6;.

else go to step 1

If || 7 f (") ||< 6|1 + f(2¥1)|, STOP and report success;
else STOP and report convergence to nonoptimal point.



e Example: BFGS:

=gt — gk

ye=(f (@) = (v f(=") "
Hyz.2) Hy n Yy

— Preserves positive definiteness
— Uses only gradients that are already needed

— Warning: denominators may get too small; should keep them away
from zero since small z; does not necessarily stop iteration.

e Note: The Hessian iterates H; may not converge to true Hessian at
solution, even if x; converges to solution.



Monopoly Example
e We look at a simple monopoly pricing example:
— Utility function: if M is spending on other goods,
UY,Z)= (Y + 2+ M =u(Y,Z) + M,

— QOutput Y and Z implies prices of uy and u.

— Monopoly problem is

max (Y, Z) = Yuy (Y, Z) + Zug (Y, Z) = Oy (Y) = C2(Z), (1)

— Restate in terms of y =InY and z =InZ, n(y, 2) = I (¥, €?)

max 7(y, 2), (2)

Newton

----------------- Coordinate Direction
--------- Newton with linesearch

— — — BFGS



Conjugate Directions

e Problem: Hessians are expensive to compute
e Solution: Don’t compute Hessians

e Neat trick in conjugate gradient method: If objective is quadratic, then
we can avoid Hessian calculation

Algorithm 4.7 Conjugate Gradient Method
Initialize. Choose 2°, s = — 57 f(2") and stopping
parameters 0 and ¢ > 0.
Step 1. Solve \; = argminy, f(z* + \s¥).
Step 2. Set ¢! = zF + \s".
Step 3. Compute the search direction
k‘+1)||2 L

sFHl = (7 f(2"HT) + —””vaﬁfzxk)ug s". (4.4.7)
Step 4. If || o% — 2" ||> e(1+ || ¥ |]), go to step 1.
Otherwise, if || <7 f(z") ||< 6(1 + f(a*)),
STOP and report success;
else STOP and report convergence

to nonoptimal point.
e Works well for

— large problems

— problems with convex objective functions.



Example: A Dynamic Optimization Problem
e Life-cycle savings problem.

— An individual lives for T" periods

— earns wages w; in period t,t =1,---,T

— consumes ¢; in period ¢

— earns interest on savings per period at rate r

— utility function 3", B'u(c;).
e Define S; to be end-of-period savings:
Str1 = (14+7)Si + w1 — 1.
— The constraint ST =0 =5
— Substitute ¢; = S;_1(1 +7) + wy — 5

e Problem now has 7" — 1 choices:

maXSt Zle BtU(St_1<1 + 7‘) + Wy — St)

3
s.T. STZS():O ()

— Appears intractable for large 1.

— However, there are two ways to exploit the special structure of this
problem and to efficiently solve this problem.



e Conjugate gradient method

— Needs only gradients, which are easily computed here.
— Objective is concave.

— Example: u(c) = —e ¢ =09T=06,r=0.2,

— Initial condition .S; = 0.

Table 4.13

Conjugate gradient method for (3)
Iterate S S9 S5 S Sk
0.4821 1.0170 1.015 1.326 0.7515
0.4423 0.7916 1.135 1.406 0.7270
0.3578 0.7631 1.120 1.446 0.7867
0.3680 0.7296 1.106 1.465 0.8258
0.3672 0.7351 1.100 1.468 0.8318
0.3710 0.7369 1.103 1.468 0.8370
0.3721 0.7447 1.110 1.476 0.8418
0.3742 0.7455 1.114 1.480 0.8427
0.3739 0.7456 1.114 1.480 0.8425

© 0 ~J O Ot = W N =

— CG performs well
x Converged at the 3-digit level after 7 iterations, 4 digits after 9

x If objective were quadratic, convergence after 5 iterations.
* Objective in (3) is not quadratic, but CG converges quickly.

« Early iterates are surprisingly good approximations.



e Newton’s method

— Looks impractical if T" large.

— Hessian is tridiagonal (a sparse matrix), so Newton step is easy to
compute.

— Sparse Hessians are common in dynamic problems

— You must recognize this and implement Newton or quasi-Newton
method with sparse Hessians



Nonlinear Least Squares

e Objective function has form, f*: R" — R, i =1,...,m.:
1~
mgcinﬁ ;fz(a:)z = S(z),

e Idea: use simple approximation of Hessian

e In econometric applications

— ['(x) are g(B, 1),
x x = (3 is parameter vector
+ 1/* are the data.

x g(3,y") is residual for observation 4

— S(p) is the sum of squared residuals at 3.
e Let f(x) denote the column vector (f*(z))" ;.

— Let J(x) be the Jacobian of f(x) = (f1(z),..., f™(x))".
. 1 . 2 11
— Let f; = g—ié and sze = 83351:4'

— The gradient of S(x) is J(x)' f: Si(x) =S, fi(z) f'(x).
— The Hessian of S(z) is J(x) ' J(x) + G(x), where

Gil@) =Y [il@) @)



e Special structure of the gradient and Hessian.
— fi(z) terms are needed to compute gradient of S(x).
— If f(x) = 0, then Hessian is just J(z)' J(z): easy to compute.

— A problem where f(z) is small at the solution is called a small residual
problem; otherwise, it is a large residual problem.

e Gauss-Newton algorithm
— Do Newton except use J(z)' J(x) for Hessian approx.
s = —(J(2") (@) (V) (4.5.1)

and avoid computing second derivatives of f.
— Natural to use for small residual problems.

— Works very well when it works.



e Problems.

— J(x)"J(x) is likely to be poorly conditioned, since it is the “square”
of a matrix.

— J(z) may be poorly conditioned itself, particularly in statistical con-
texts.

— Gauss-Newton step may not be a descent direction.
e Solution: Levenberg-Marquardt algorithm.
— Use J(z)' J(z) + M for some scalar A (I is identity matrix):
"= —(J(@) I(@) M) TV f (")

— The Al term reduces conditioning problems.

— s¥ will be descent direction for large ) since s* gets closer to steepest
descent direction .



Linear Programming

e Canonical linear programming problem is

min, a ' x

s.t.Cx = b, (4)
x > 0.
— Dz < f : use slack variables, s, and constraints Dx + s = f,s > 0.
— Dx > f:use Dr—s= f,s >0, s is vector of surplus variables.
—x > d : define y = x — d and min over y
— x; free: define x; = y; — 2;, add constraints y;, z; > 0, and min over
(Yis 2i)-



e Basic method is the simplex method. Figure 4.4 shows example:
ming , —2r —y
st.x+y <4, x,y=>0,
r<3, y<2
— Find some point on boundary of constraints, such as A.
— Step 1: Note which constraints are active at A and points nearby.
— Find feasible directions and choose steepest descent direction.

— Figure 4.4 has two directions: from A: to B and to O, with B better.

— Follow that direction to next vertex on constraint boundary (a linear
equation), and go back to step 1.

— Continue until no direction reduces the objective: point H.

— Stops in finite time since there are only a finite set of vertices.

VA B
D
C
>
O A X



e General history

— Goes back to Dantzig (1951).
— Fast on average.
— Worst case time is exponential in number of variables and constraints

— Software implementations vary in numerical stability

e Interior point methods

— Developed in 1980’s

— Better on large problems



Constrained Nonlinear Optimization

e General problem:
min,, f(x)

s.t. g(x) = (4.7.1)

— f: X CR" — R: n choices
—g: X CR" — R™ m equality constraints
—h: X CR" — R’ / inequality constraints
— f,g,and h are C? on X
e Kuhn-Tucker theorem: if there is a local minimum at z* and a constraint

qualification holds, then there are multipliers \* € R™ and p* € R’ such
that x* is a stationary, or critical point of L, the Lagrangian,

Lz, A1) = f(z) + A g(x) + p"h(z) (4.7.2)
e First-order conditions, £,(x*, A", u*) = 0, imply that (A", u*, x*) solves

fot+ N gedpn"h, =0
ph'(z)=0, i=1,--- ¢

g(x)=0 (4.7.3)
h(z)<0
p<0



A Kuhn-Tucker Approach

e Idea: try all possible Kuhn-Tucker systems and pick best

— Let J be the set {1,2,---,(},

— For a subset P C J, define the P problem, corresponding to a com-
bination of binding and nonbinding inequality constraints

g(x)=0
hi(z)=0, 1€P,
uw=0, ie¢J—-"P,
fot+ Mg+ p"h,=0.

(4.7.4)

— Solve (or attempt to do so) each P-problem

— Choose the best solution among those P-problems with solutions con-
sistent with all constraints.

e We can do better in general.



Penalty Function Approach
e Most constrained optimization methods use a penalty function approach:

— Replace constrained problem with related unconstrained problem.

— Permit anything, but make it “painful” to violate constraints.

e Penalty function: for canonical problem

min, f(x)
st. g(x)=a, (4.7.5)
h(z) <b.
construct the penalty function problem
. 1 i 2 ; 2
min flz) + §P Z (9'(x) —a;)” + Z (max [0, #/ (z) — b;])
i j
(4.7.6)

where P > (0 is the penalty parameter.

— Denote the penalized objective in (4.7.6) F(x; P, a,b).
— Include a and b as parameters of F'(x; P, a,b).
— If P is “infinite,” then (4.7.5) and (4.7.6) are identical.

— Hopefully, for large P, their solutions will be close.



e Problem: for large P, the Hessian of F', F).,, is ill-conditioned at x away
from the solution.

e Solution: solve a sequence of problems.

— Solve min, F (z; Py, a,b) with a small choice of P, to get x'.

— Then execute the iteration
" € argmin F (x; Pyy1,a,b) (4.7.7)
xr

k

where we use 2" as initial guess in iteration k+1, and F,,(2"; P..1, a, b)

as the initial Hessian guess (which is hopefully not too ill-conditioned)

e Shadow prices in (4.7.5) and (4.7.7):

— Shadow price of a; in (4.7.6) is F,, = P(¢'(x) — a;).
— Shadow price of b; in (4.7.6) is Fy; P(h/(x) — b;) if binding, 0 other-

wise.

e Theorem: Penalty method works with convergence of x and shadow prices
as Py, diverges (under mild conditions)

e Method works locally not necessarily globally
— Consider ming<,<; 2°.
— Penalty function is 23 + P[(min[z, 0])* + max[x — 1, 0])?]

— Unbounded as x — —oo, but has local min at x = 0.



e Simple example

— Consumer buys good y (price is 1) and good z (price is 2) with income
D.

— Utility is u(y, z) = \/yz.

— Optimal consumption problem is

e VI (4.7.8)
st. y+2z <b.
with solution (y*, 2*) = (5/2,5/4), \* = 871/2,

— Penalty function is
1
u(y, z) — §P(max[0, y + 2z — 5])?

— Tterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7
Penalty function method applied to (4.7.8)
k By (y,2) — (y*,2*)  Constraint violation A error
0 10 (8.8(-3), .015) 1.0(—1) —5.9(—3)
1 10 (8.8(—4), 1.5(=3)) 1.0(—2) —5.5(—4)
2 10° (5.5(=5), 1.7(—4)) 1.0(—3) 2.1(—2)
3 10" (=2.5(—4), 1.7(—4)) 1.0(—4) 1.7(—4)
4 10° (—2.8(—4), 1.7(—4)) 1.0(—5) 2.3(—4)




Barrier Function Approach
e Some methods use a barrier function approach:

— Make it “painful” to nearly violate constraints.

— Take unconstrained approach even though new objective is not de-
fined everywhere

e For canonical problem

min,, f(x)
4.7.5
s.t. h(x) <b ( )

construct the barrier function problem
min f(z Z G (W (x (4.7.6)

where G (z) > 0 whenever z < b, and infinite when 2z = 0.

e Possible barrier functions are

G (z)=—log(—2)
G(z)=—1/z

e Solve sequence of problems with € — 0



General applicability

e Penalty and barrier methods replace true constrained problem with a

smooth, unconstrained problem

e True problem often has a boundary solution whereas penalty or barrier

function has interior solution

e The basic penalty and barrier methods can be used more generally to
transform economic problems with difficult boundary problems or singu-
larities into more manageable problems with interior, regular solutions.



Domain Problems

e Constrained problems

min,, f(x)
s.t. g(x) =0 (4.7.1)
h(z) <0

where f: X CR" >R, g: X CR"—-R™ h: X CR" - R’
e The penalty function approach produces an unconstrained problem,

max F'(x; P, a,b)

TeRM?

where it is assumed that F'(x; P, a,b) is defined for all x.
e Example: Consumer demand problem
max, , u(y, 2)
st.py+qz<1.

— Penalty method

1
max u(y, z) — §P(max[0, PY+qz— I])2
Y.z

— Problem: u (y, z) will not be defined for all y and z, such as

u(y, z)=logy + log z
uly, z) =y

u(y, 2)= (y” 61 2V 6)

— Penalty method will crash when computer tries to evaluate u (y, 2)!

7/2



e Solution

— Strategy 1: Transform variables
« If functions are defined only for x; > 0, then reformulate in terms
of z; = log x;
x For example, let y = logy, z = log 2z, and solve
| _ -
max u(e’, e*) — §P(max[0, pel+qe —1I))7°
Y,z
« Problem: log transformation may not preserve shape; e.g., concave
function of x may not be concave in log x
— Strategy 2: Alter objective and constraint functions

* E.G.; replace u (¢) = log ¢ with, for some small £ > 0

a(c):{u(c), c>e€

u(e)+u () (c—e)+u'(e)(c—e) /2, c<e

* Maintains curvature

+ Equals real u (¢) on most of domain, which hopefully includes so-
lution

* Not as easy to apply to multivariate functions



Sequential Quadratic Method

e Special quadratic problem, linear constraints

min, (z —a)' A(z — a)
st. b(x—s)=0
clr—q) <0

has special methods

e Sequential Quadratic Method

— Solution is stationary point of Lagrangian
L(z, A p) = fz) + A g(x) + p" h(z)

— Suppose that the current guesses are (z+, Ak, 1i+).

k

— Let step size s solve approximating quadratic problem

ming L, (%, N, p5?) (2 — s) + (2% — 8)T Lo (@, N, 1iF) (28 — 5)
sit. g(z¥) + gu(aF) (2% — ) =0
h(z®) + h(2¥)(2F — s) <0

k+1

— The next iterate is 2! = z¥ + s**1; X\ and p are also updated but

we do not describe the detail here.
— Proceed through a sequence of quadratic problems.
— S.Q. method inherits many properties of Newton’s method

* local convergence

x can use quasi-Newton and line search methods.



Active Set Approach
e Problems:

— Kuhn-Tucker approach has too many combinations to check

* some choices of P may have no solution

* there may be multiple local solutions to others.

— Penalty function methods are costly since all constraints are in (4.7.5),
even if only a few bind at solution.

e Solution: refine K-T with a good sequence of subproblems.

— Let J be the set {1,2,---, ¢}
— for P C J , define the P problem
min, f(z)
s.t. g(x) =0, (P) (4.7.10)
hi(z) <0, i€P.
— Choose an initial set of constraints, P, and start to solve (4.7.10-P).
— Periodically drop constraints in P which fail to bind
— Periodically add constraints which are violated.

— Increase penalty parameters

e The simplex method for linear programing is really an active set method.



Efficient Outcomes with Adverse Selection

e Rothschild-Stiglitz-Wilson (RSW) model of insurance markets with ad-

verse selection; we formulate it as an endowment problem

e All agents receive either e or ey, €1 > €5

— type H: probability 7 of receiving e;

— type L : probability 7" of receiving e, 7 > 7%,
— 0" (0% =1 — 0) is fraction of type H (L) agents.
— Risks are independent across agents;

— Infinite number of each type; invoke LLN.
e Social planner

— offers insurance contracts; redistributes income across states and peo-
ple

— sees only individual’s realized income, not his type

— must break even.



e y = (Y1, %) is net state-contingent total income

— pays e; — y; to insurer and consumes vy, if income is e;

— receives 15 — e and consumes s otherwise.
e Type t expected utility with net income, v/'.
U'(y') = m'u'(yy) + (1 — 7' (), t = H, L,

e Planner’s profits are

My, yl)= 0" (xf (e — yl) + (1 — 7) (e — yi))

e o)+ (- e - ).
e Social planner offers menu (yH : yL) and lets agents choose
o y1 yt € R? constrained efficient if it solves
max AU (y")+(1 — \UL(yh)
st Ut(y") = UM (y"h), (4.8.4)

Ut(y") > Ut(y"),
Iy, y") >0,

where 0 < A < 1 is the welfare weight of type H agents.



e FExample (Rothschild-Stiglitz, Wilson, Miyazaki, Spence):

—e1=1,e0=0,71=08 =1
—u(c) = —e ¥
— P, = 10"%/2; P, = 10* did not work as well

(Modification of Table 4.9)
Adverse selection example
ahoot (i) (ylhys)  IVEUMyR) - UR(yY) Profit

0.70 0.10| 0.87,0.51 | 0.70,0.70 —1(—10) —1(—10)
0.50 0.10| 0.92,0.35 | 0.50,0.50 —5(—14) —1(—14)
0.70 0.75| 0.82,0.79 | 0.77,0.77 —1(-12) —6(—13)
0.50 0.75]0.797,0.789 | 0.794,0.794 —2(—12) —6(—13)

e The results do reflect the predictions of adverse selection (*“hidden infor-
mation”) theory.

— If 9" small, there is no cross-subsidy. Type H agents receive actu-
arially fair contracts but must face risk to keep type L agents from
pretending to be H.

— If 9" large, cross-subsidies arise: the numerous type H agents take
actuarially unfair contracts but receive safer allocations.

— Type L agents always receive a risk-free consumption since no one
wants to pretend to be L.



Computing Nash Equilibrium
e A game with n players.

— Player i: strategy set S; = {s1, Si2, - , SiJ }-
— S =1II"|5; is set strategy combinations.

— M;(q;,0_;) is payoff to ¢ from mixed strategy ¢; if others play o_;.

e Consider the function

Z > {max[Mi(s;;,0-;) — Mi(0),0]}".

i=1 s;;€8;

Theorem 3 (McKelvey) The solutions to

are the Nash equilibria of (M,S) and they are also the zeros of v(o), and
conversely.

e Tradeofts

— Reduces Nash computation to a minimization problem

— There may be local optima where v(c) > 0 and are not equilibria.



e Example: simple coordination game:

R
1,1]0,0
0,0]1,1

L

— pi- is prob. that player ¢ plays his jth strategy.
— Payoff for each player is pip? + psp3.
— Lyapunov function for this game is
v(p1, Py, 13, P3) = Z max[0, p] — (pip} + pops)|*-
1,7=1
— Three global min (and three equilibria) are
(p1, P2, P1, p3)=(1, 0, 1, 0),

(0.5, 0.5, 0.5, 0.5),
(0, 1, 0, 1)

— BFGS did well except it got hung up on saddle point, but such
hangups are easily fixed.

Table 4.10: Coordination game

Iterate (pi,pi) (pi, pi) (1, i) (1, pi)

0 (0.1,0.25) (0.9, 0.2) (0.8,0.95)  (0.25, 0.25)
1 (0.175, 0.100) (0.45, 0.60)  (0.959, 8.96)  (0.25, 0.25)
2 (0.110, 0.082) (0.471, 0.561) (0.994, 0.961) (0.25, 0.25)
3 0, 0) (0.485, 0.509) (1.00, 1.00)  (0.25, 0.25)
4 (0, 0) (0.496, 0.502) (1.00, 1.00)  (0.25, 0.25)
5 0, 0) (0.500, 0.500) (1.00, 1.00)  (0.25, 0.25)




State-of-the-art Algorithms

e None of these methods are best by themselves

e Modern algorithms use sophisticated combinations of

— local approximation methods
— penalty functions,
— active set ideas

— sequential quadratic approximation ideas.
e Software

— Matlab optimization toolbox - basic implementations, but not best

— Solnp:  Yinyu Ye’s alternative Matlab optimization toolbox - see
http: //dollar.biz.uiowa.edu/col /ye/matlab.html.

— NPSOL, MINOS, SNOPT - best software; written in Fortran
x NPSOL - very good for dense problems, good interface

x MINOS - best for large problems with sparse constraint systems,
clumsy interfacte

— IMSL, NAG libraries - contains good algorithms (NPSOL is in NAG)
— GAMS

x excellent general package for optimization and nonlinear equation

solving
x includes MINOS with good interface
— AMPL - good, user-friendly package

— NEOS: a free resource where you can submit a problem and it is
assigned to an idle computer in its network. Look at http://www-
neos.mcs.anl.gov/.



