为加强研究生学术交流活动,推进学术创新,特开通“研究生学术报告预告区”。我校研究生和教师可以在预告区及时发布和了解有关研究生学术报告的信息,届时参加。也可就某学术报告展开专题讨论与交流。
现有基于样本块的图像修复算法,大多通过人工设定样本块大小来达到最佳修复效果,缺乏自适应性;此外,对图像不同纹理和结构区域采用相同大小的样本块,也不利于获得整体最优修复效果。为解决上述问题,提出一种基于改进结构相似性的自适应样本块大小选取算法,在传统的SSIM算法的基础上增加了梯度信息,并通过结合样本块亮度、对比度和结构3个模块来衡量结构差异,以此确定不同结构和纹理区域的最优样本块大小,提高算法适应性,改善修复效果。