研究生学术报告预告登记(开题、中期、答辩)

       为加强研究生学术交流活动,推进学术创新,特开通“研究生学术报告预告区”。我校研究生和教师可以在预告区及时发布和了解有关研究生学术报告的信息,届时参加。也可就某学术报告展开专题讨论与交流。

报告人: 贾亚龙
学号: 2017234295
学院: 电气与自动化工程学院
报告类型: 第二次学术报告
日期: 2019年04月13日
时间: 09:30
地点: 第26教学楼E座 204
导师: 雷建军
题目: Self-Supervised Convolutional Subspace Clustering Network
内容提要:

Subspace clustering methods based on data selfexpression have become very popular for learning from data that lie in a union of low-dimensional linear subspaces. However, the applicability of subspace clustering has been limited because practical visual data in raw form do not necessarily lie in such linear subspaces. On the other hand, while Convolutional Neural Network (ConvNet) has been demonstrated to be a powerful tool for extracting discriminative features from visual data, training such a ConvNet usually requires a large amount of labeled data, which are unavailable in subspace clustering applications. To achieve simultaneous feature learning and subspace clustering, we propose an end-to-end trainable framework, called Self-Supervised Convolutional Subspace Clustering Network (S2ConvSCN), that combines a ConvNet module (for feature learning), a self-expression module (for subspace clustering) and a spectral clustering module (for selfsupervision) into a joint optimization framework. Particularly, we introduce a dual self-supervision that exploits the output of spectral clustering to supervise the training of the feature learning module (via a classification loss) and the self-expression module (via a spectral clustering loss). Our experiments on four benchmark datasets show the effectiveness of the dual self-supervision and demonstrate superior performance of our proposed approach.

图片:
登记人: 贾亚龙
登记时间: 2019年06月23日 星期日 11:00