为加强研究生学术交流活动,推进学术创新,特开通“研究生学术报告预告区”。我校研究生和教师可以在预告区及时发布和了解有关研究生学术报告的信息,届时参加。也可就某学术报告展开专题讨论与交流。
近年来,随着医学影像技术的快速发展,医学图像分析步入大数据时代,如何从海量的医学图像数据中挖掘出有用信息,对医学图像识别带来巨大的挑战。深度学习是机器学习的一个新领域,传统的机器学习方法不能有效地挖掘到医学图像中蕴含的丰富信息,而深度学习通过模拟人脑建立分层模型,具有强大的自动特征提取、复杂模型构建以及高效的特征表达能力,更重要的是深度学习方法能从像素级的原始数据中逐级提取从底层到高层的特征,这为解决医学图像识别面临的新问题提供了新思路。首先阐述深度学习方法,列举深度学习方法的三种常见的实现模型,并介绍深度学习的训练过程; 随后总结了深度学习方法在疾病检测与分类和病变识别两方面的应用情况,以及深度学习应用在医学图像识别中的两个共性问题; 最后对深度学习在医学图像识别中存在的问题进行分析及展望.